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Hybrid lattice Boltzmann finite-difference simulation
of axisymmetric swirling and rotating flows
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SUMMARY

The axisymmetric flows with swirl or rotation were solved by a hybrid scheme with lattice Boltzmann
method for the axial and radial velocities and finite-difference method for the azimuthal (or swirl) velocity
and the temperature. An incompressible axisymmetric lattice Boltzmann D2Q9 model was proposed
to solve the axial and radial velocities through inserting source terms into the two-dimensional lattice
Boltzmann equation. Present hybrid scheme was firstly validated by simulations of Taylor–Couette flows
between two concentric cylinders. Then the benchmark problems of melt flow in Czochralski crystal
growth were studied and accurate results were obtained. Numerical experiment demonstrated that present
axisymmetric D2Q9 model is more stable than the previous axisymmetric D2Q9 model (J. Comp. Phys.
2003; 186(1):295–307). Hence, compared with the previous model, present numerical method provides a
significant advantage in simulation melt flow cases with high Reynolds number and high Grashof number.
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1. INTRODUCTION

Many important engineering flows involve swirl or rotation, for example, the flows in combustion,
turbomachinery and mixing tanks. Here, we are interested in the axisymmetric flows with swirl and
rotation. Since the gradient for any variable in the azimuthal direction is zero, an axisymmetric
swirling flow is a quasi-three-dimensional (3D) problem for conventional Navier–Stokes (NS)
solvers in the cylindrical coordinate system. In this paper two typical axisymmetric swirling and
rotating flows would be studied.
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One is Taylor–Couette flow between two concentric cylinders. At low rotational speed of the
inner cylinder, the flow is steady and the vortices are planar. Three-dimensional vortices would
begin to appear when the speed of rotation exceeds a critical value that depends on the ratio
of radius of two cylinders. Previously, there are some studies on Taylor–Couette flow using the
conventional NS solvers [1].

The other typical axisymmetric swirling flow is the melt flow in Czochralski (CZ) crystal
growth. CZ crystal growth is one of the major prototypical systems for melt-crystal growth. It has
received the most attention because it can provide large single crystals. In typical CZ crystal growth
systems, the high Reynolds number and Grashof number of the melt make numerical simulation
difficult. The conventional CFD methods such as finite volume and finite-difference methods have
been developed to simulate the CZ crystal growth flow problems [2–4]. The second-order central
difference scheme is usually chosen to discretize the convection terms in NS equations. However,
for melt flows with high Reynolds number and Grashof number which are the requirement of growth
of larger and perfect crystals, the convection terms in the NS equations become dominant and the
second-order central difference scheme may be unsuitable due to enhanced numerical instability
[3]. However, if the low-order upwind scheme is applied, we can only obtain accurate solutions
by using very fine grid [3]. Considering the discretization problem in conventional CFD method,
lattice Boltzmann method (LBM) was proposed to simulate the melt flow in CZ crystal flow [5].

It is well known that LBM has been proposed as an alternative numerical scheme for solving the
incompressible NS equations [6, 7] and have proven to be superior in accuracy and efficiency for
certain applications. One main advantage is that the convection operator of LBM in phase space
is linear which may overcome the above discretization problem in conventional CFD method.

Since the standard two-dimensional (2D) LBM is based on the Cartesian coordinate system, the
axisymmetric swirling flows cannot be simulated as a quasi-3D problem in cylindrical coordinates
using standard 2D LBM. On the other hand, of course, the axisymmetric swirling flows can
be solved by the 3D LBM [8, 9] which using the 3D cubic lattices with proper curved wall
boundary treatment directly. However, that means a large grid size. It is not efficient to simulate
an axisymmetric swirling flow problem in that way.

To simulate the axisymmetric flows without rotation more efficiently, in 2001, Halliday et al. [10]
proposed an axisymmetric D2Q9 model and it seems very successful for simulation steady flow
in straight tube. The main idea of the model is inserting several spatial and velocity-dependent
‘source’ terms into the 2D lattice Boltzmann equation (LBE).

Following the idea of Halliday et al. [10], Peng et al. [5] used LBM to study the melt flow in
CZ crystal growth as a quasi-3D problem. They proposed an axisymmetric D2Q9 LBM to solve
the axial and radial velocity in an axisymmetric plane and swirl velocity and temperature were
solved by finite-difference method. However, Peng et al. [5] only simulated test cases of lower
Reynolds number and Grashof number.

It was found that the axisymmetric model proposed by Peng et al. [5] is unstable for simulations
of melt flows with high Reynolds number (Re= 104) and high Grashof number (Gr = 106) even
with very fine grid such as 200× 200.

On the other hand, since the model proposed by Peng et al. is derived from the standard
D2Q9 model, the compressible effect of standard D2Q9 model [11, 12] may be involved in their
simulation.

To improve the numerical stability and eliminate the compressibility effect of standard LBM,
here a new incompressible axisymmetric D2Q9 model was proposed. This axisymmetric D2Q9
model was derived from the incompressible D2Q9 model proposed by He and Luo [12].
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In this paper, the axisymmetric swirling flows would be solved by a hybrid scheme. The axial
and radial velocities were solved by LBM and swirl velocity and temperature were solved by
finite-difference method. This hybrid scheme was firstly validated by simulation of Taylor–Couette
flows between two concentric cylinders. Then the melt flows in CZ crystal growth were studied
in detail. Our numerical results were compared with available data of Raspo et al. [4] and Xu
et al. [3]. Through numerical tests, present axisymmetric D2Q9 model was proved more stable
than the model of Peng et al. [5] for steady axisymmetric swirling and rotating flows. As a result,
our hybrid scheme can give accurate results for melt flow with high Reynolds number and high
Grashof number using smaller grid size.

2. NUMERICAL METHODS

We consider the problems of the laminar axisymmetric swirling flow of an incompressible liquid
with an axis in x direction. The following continuity equation (1) and NS momentum equations
(2) in the pseudo-Cartesian coordinates (x, r) are used to describe the flow in axial and radial
directions

��u� = −ur
r

(1)

�t u� + ��(u�u�) + 1
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�� p − ���(��u�) =−u�ur

r
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where u� (�= x, r) is the two components of velocity and u� is the velocity ux or ur . S is the
additional source term that may appear in some flow problems. In the above equations we adopt
the Einstein summation convention.

For the axisymmetric swirling flow, there are no circumferential gradients but there may still
be non-zero swirl velocities uz . The momentum equation of azimuthal velocity is
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Here we proposed an axisymmetric lattice Boltzmann D2Q9model to recover above equations (1)
and (2) through the Chapman–Enskog expansion (refer to Appendix A). Since the lattice Bhatnagar–
Gross–Krook (LBGK) model is the simplest model among the LBE models in application, our
axisymmetric lattice Boltzmann model is derived from an incompressible LBGK D2Q9 model
[12]. The nine discrete velocities of our model are as follows:

ei =

⎧⎪⎪⎨
⎪⎪⎩

(0, 0), i = 0

(cos[(i − 1)�/2], sin[(i − 1)�/2])c, i = 1, 2, 3, 4
√
2(cos[(i − 5)�/2 + �/4], sin[(i − 5)�/2 + �/4])c, i = 5, 6, 7, 8

(4)

where c= �x/�t , and in our studies c= 1. �x and �t are the lattice spacing and time step size.
The evaluation equation to describe 2D flow in (x, r) pseudo-Cartesian coordinates is illustrated

as Equation (5) which is similar to the evaluation equation for standard D2Q9 model in 2D (x, y)
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Cartesian coordinates. The difference is that a source term hi (x, r, t) was incorporated into the
microscopic evaluation equation

fi (x + ceix�t , r + ceir�t , t + �t ) − fi (x, r, t) = 1

�
[ f eqi (x, r, t) − fi (x, r, t)] + hi (x, r, t) (5)

In Equation (5), fi (x, r, t) is the distribution function for particles with velocity ei at position
(x, r) and time t . � is the relax time constant. The relax time constant � and the fluid viscosity
satisfies equation

� = c2s �t (� − 0.5) (6)

where cs = c/
√
3. In Equation (5), the equilibrium distribution f eqi of incompressible D2Q9 model

[12] is defined as

f eqi (x, r, t) =�i
p

c2s
+ �i�0

[
ei · u
c2s

+ (ei · u)2

2c4s
− u2

2c2s

]
, i = 0, 1, 2, . . . , 8 (7)

where p is the pressure and �0 is the density of fluid. In the above expressions, for D2Q9
model, �0 = 4

9 , �i = 1
9 (i = 1, 2, 3, 4), �i = 1

36 (i = 5, 6, 7, 8). It is noticed that the main differ-
ence between above incompressible D2Q9 model and the standard D2Q9 model is the form of
Equation (5).

3. HYBRID SCHEME

3.1. Implementation of the axisymmetric model and finite difference

In numerical simulations, one must ensure that the Mach number is low and the density fluctuation
(��) is of order O(M2) [12]. The additional limit Lx/(csT )�1 is illustrated in our derivation
(refer to Appendix A). In this part, we mainly discuss the implementation of the axisymmetric
D2Q9 model.

In the D2Q9 model, fi (x, r, t) is the distribution function. The macroscopic pressure p and
momentum �0u are defined as

8∑
i=0

fi = p/c2s ,
8∑

i=0
fi ei� = �0u� (8)

The two main steps of lattice BGK model are collision and streaming. In the collision step, a
group of calculations (9) and (10) are implemented

f nei = fi (x, r, t) − f eqi (x, r, t) (9)

f +
i (x, r, t) = f eqi (x, r, t) +

(
1 − 1

�

)
f nei + �t h

(1)
i + �2t h

(2)
i (10)

where f eqi is the equilibrium momentum distribution function which can be obtained through

Equation (7), f nei is the non-equilibrium part of distribution function, h(1)
i and h(2)

i are the ‘source’
terms added into the collision step, which can calculated through Equations (A11) and (A23),
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respectively (refer to Appendix A). For simplicity, in our study, �t = �x · f +
i is the post-collision

distribution function.
In the streaming step, the new distribution function value obtained from Equation (10) would

propagate to neighbouring eight lattices. That procedure can be represented as follows:

fi (x + eix�t , r + eir�t , t + �t ) = f +
i (x, r, t) (11)

For the velocity derivations in Equation (A23), the terms �r ux + �xur , �xux and �r ur can all
be obtained through Equation (12) with � = x, � = r ; � = � = x and � = � = r , respectively

�0�(��u� + ��u�) = −
(
1 − 1

2�

)
8∑

i=0
f (1)
i ei�ei� =−

(
1 − 1

2�

)
8∑

i=0
f nei ei�ei� + o(	2) (12)

For the term �r ux in Equation (A23), it is equal to (�r ux +�xur )−�xur . Since (�r ux +�xur ) can
be easily obtained by Equation (12), only value of �xur is left unknown to determine �r ux . Here
finite-difference method is used to obtain �xur at lattice node (i, j), which can be calculated by

(�xur )i, j = ((ur )i+1, j − (ur )i−1, j )/(2�x ) (13)

The values of �r ux + �xur , �xux , �r ur , �r ux and �xur for the lattice nodes which just on the wall
boundary can also be calculated from Equations (12) and (13). Hence, for the additional source
term in our model, most velocity gradient terms can be obtained from high-order momentum of
distribution function, which is consistent with the philosophy of the LBM.

For the momentum equation of azimuthal velocity, it was solved by finite-difference method.
Equation (3) can be solved explicitly by using first-order forward difference scheme in time and
the second-order central difference scheme (e.g. Equations (15) and (16)) for space discretization
as follows:
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�2unz
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= (unz )i+1, j + (unz )i−1, j − 2(unz )i, j

�2x
(16)

3.2. Boundary condition

Boundary condition is an important issue when using LBM to simulate the fluid flows [13]. It is
well known that bounce back scheme is one of the simplest schemes in LBM. Here this scheme
was applied for non-slip wall boundary condition.

For the axisymmetric boundary condition (i.e. the x-axis), the specular reflection scheme was
applied to lattice nodes in axis [5]. As we know, specular reflection scheme can be applied to
free-slip boundary condition where no momentum is to be exchanged with the boundary along
the tangential component. Hence, for the free surface (e.g. x = H , Rx<r<Rc in Figure 4) in our
simulated case, the specular boundary condition is also applied.
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When using the finite-difference method to solve the equation for swirl velocity or the heat
equation, we may encounter the Neumann boundary condition. Here the Neumann boundary
condition was transferred into the Dirichlet boundary condition. For example, if �T/�x = 0 was
imposed in the boundary x = 0 (i.e. the r -axis, refer to Figure 4), the T value in the boundary
lattice node (1, j) can be determined by extrapolation from the inner lattice nodes as (T )1, j =
(4(T )2, j − (T )3, j )/3, where j is the lattice index in r coordinate.

4. RESULTS AND DISCUSSION

4.1. Taylor–Couette flows

Figure 1 illustrates the geometry of Taylor–Couette flow, our computational domain is a r–x
plane. The governing equations for the axisymmetric swirl flow are Equations (1)–(3) with S = 0 in
Equation (2). The boundary conditions used in our simulation are also illustrated in Figure 1. The
Reynolds number is defined as Re=WD/�, where W is the azimuthal velocity of inner cylinder,
D is the gap of the annulus and � is the fluid viscosity. The radius ratio of inner cylinder and out
cylinder is set as 0.5. The aspect ratio is set as 3.8.

Firstly, the grid independence of the results was examined and it was found that with 20× 76
uniform grid, present numerical method can give out very accurate results. The maximum stream
function values in r–x plane for cases of Re= 85, 100 and 150 are listed in Table I. It seems that
even with grid 20× 76, the results of our hybrid scheme agree well with those of Liu [1] which
were obtained by very fine grid. The contours of stream function, pressure and vorticity for case
Re= 150 are illustrated in Figure 2. From Figure 2, we can see the four cell secondary modes.
These contours and flow pattern also agree well with results of Liu [1].

r

x

ux=0
ur=0
uz=W

ux=0
ur=0
uz=0

Figure 1. Geometry of Taylor–Couette flow and boundary conditions.
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Table I. The maximum stream function value in x–r
plane for Taylor–Couette flow (grid 20× 76).

Re 
max 
max [1]
85 4.810× 10−2 4.854× 10−2

100 5.501× 10−2 5.542× 10−2

150 6.427× 10−2 6.439× 10−2

Figure 2. The contour of stream function, pressure and vorticity for case Re = 150 with grid 20× 76.

Secondly, the efficiency of our hybrid scheme (LBM + FD) and explicit finite volume method
(FVM) was compared. The efficiency is evaluated by comparing the respective computing times
required. To minimize the influence of computers and convergence criterion, in this study, both our
LBM+FD solver and FVM solver (FLUENT) were executed on a super computer (Compaq ES40:
total performance of 5300 Mflops) in the National University of Singapore. In our simulations,
the zero velocities were initialized everywhere. The residual used to monitor the convergence is
defined using the uz-momentum equation for two solvers as follows:

LBM + FD:
∑∣∣∣∣∣u

n+1
z − unz

�t

∣∣∣∣∣ (17)

FVM:
∑∣∣∣∣∣�u

n
z

�t
+ unx

�unz
�x

+ unr
�unz
�r

+ unr u
n
z

r
− �

(
�2unz
�x2

+ �2unz
�r2

)
− �

r

(
�unz
�r

− unz
r

)∣∣∣∣∣ (18)
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Figure 3. Convergence history for FLUENT and the hybrid scheme (LBM + FD).

Table II. Comparison of CPU time for hybrid scheme and FVM simulation
of Taylor–Couette flow (Re= 100, grid 30× 114).

Steps CPU time (s) 
max

FLUENT 13 200 1523 5.530× 10−2

LBM + FD (�= 0.59) 45 300 1560 5.553× 10−2

LBM + FD (�= 0.68) 21 800 742 5.612× 10−2

Liu — — 5.542× 10−2

Note that all the computations are carried out on a single-CPU of the computer Compaq ES40,
which does not take parallel advantage of the LBM.

For comparison purpose, the case of Taylor–Couette flow for Re= 100 using grid 30× 114
was simulated. In the explicit FVM solver (FLUENT), the courant number was set as CFL= 1.
The convergence for the hybrid scheme and FVM solver is displayed in Figure 3 in terms of
relative residual error (the residual expressions were normalized by the initial residual). The
overall convergence trend of our hybrid scheme is similar to that of FVM solver.

The CPU times for hybrid scheme and FVM are also listed in Table II. It seems that to reach
the same convergence criterion, our LBM+ FD solver (�= 0.59) takes almost same CPU time as
the explicit FVM solver. The calculation of LBM + FD solver with relax time constant � = 0.68
is faster than calculation with �= 0.59.

According to our experience, for a 2D flow case with same grid, usually the explicit FLUENT
solver requires about eight times larger CPU time per iteration than our 2D LBM solver. It is also
observed that for axisymmetric cases without rotation, the FLUENT solver requires about four
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A

Figure 4. The momentum and thermal boundary conditions of melt flow in Czochralski crystal growth.

times larger CPU time per iteration than axisymmetric LBM. That may be due to the fact that
compared with a 2D case, FLUENT almost does not require more CPU time for axisymmetric
case while axisymmetric LBM need more effort to calculate the source terms.

From Table II, it is found that for the axisymmetric flow with rotation, compared with LBM+FD
solver, FLUENT requires about 3.35 times larger CPU time per iteration. It is also observed from
our numerical experiment that the time spent for the solving of Equation (14) (i.e. FD) in our
LBM + FD scheme is around 12% of total CPU time.

4.2. Melt flows in CZ crystal growth

In the CZ crystal growth, the melt flow is very complex because it is a combination of natural
convection due to thermal gradients and forced convection due to rotation of the crystal and the
crucible. Here, the Wheeler benchmark problem [14] in CZ crystal growth is taken as the test
example to validate our numerical method. The configuration and the momentum and thermal
boundary conditions are all illustrated in Figure 4. In the problem, a vertical cylindrical crucible
filled with a melt to a height H = Rc rotates with an angular velocity �c. In the top of the melt, it
is bounded by a coaxial crystal with radius Rx = �Rc (� = 0.4) which rotates with angular velocity
�x . There is a phase boundary between the crystal and melt. In the top right part of melt (R>Rx ),
there is a free surface. The ux , ur , uz are the axial, radial and azimuthal velocity components,
respectively.

The continuity and momentum equations for CZ crystal growth can also illustrated by Equations
(1)–(3). In Equation (2), since the Boussinesq approximation is applied to this buoyancy force
term, S = g�0(T − Tc)��x , where g is the acceleration due to gravity, �0 is the thermal expansion
coefficient, Tc is the temperature of crucible. The governing equation of temperature is

�T
�t

+ ux
�T
�x

+ ur
�T
�r

= �

Pr

(
�2T
�x2

+ �2T
�r2

+ 1

r

�T
�r

)
(19)
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This equation can be solved explicitly by finite-difference method as Equation (14). However, in
this part, to accelerate convergence rate, finite-difference equations for Equations (3) and (19) were
solved by the tridiagonal matrix algorithm (TDMA) at each iteration.

The dimensionless parameters: Reynolds number Rec, Rex , Prandtl number Pr and Grashof
number Gr are defined as

Rec = R2
c�c

�
, Rex = R2

c�x

�
, Pr = �

�
, Gr = g�0(Tc − Tx )R3

c

�2

where � is the thermal diffusivity. In our simulations, Pr = 0.05. The value of characteristic
velocity Ut =

√
�0g(Tc − Tx )Rc was chosen as 0.15 for Gr�105 and 0.25 for Gr>105. When

Ut is determined, the kinetic viscosity � can be determined by Gr. And then the relaxation times
� is determined by Equation (6). Another characteristic velocity Uh = Rc�x� is also used when
Gr = 0 in our simulation and it is usually set as 0.1.

For the results, Rc and �/Rc are used as the characteristic length, speed scales. The dimensionless
temperature is defined as T ′ = (T − Tx )/(Tc − Tx ), where Tx is the temperature of the crystal.

In our simulations, the zero velocities and zero temperature were initialized everywhere and the
convergence criterion in our simulation is set as

∑
i, j

‖
√

[ux (xi , r j , t + �t ) − ux (xi , r j , t)]2 + [ur (xi , r j , t + �t ) − ur (xi , r j , t)]2‖
‖
√

[ux (xi , r j , t + �t )]2 + [ur (xi , r j , t + �t )]2‖
<10−6 (20)

where i, j are the lattice nodes index.
To compare with available data of Raspo et al. [4], Buckle et al. [2] and Xu et al. [3], all of the

present numerical results are expressed as stream function. The stream function 
 is defined as

�


�r
= −rux ,

�


�x
= −rur (21)

with 
= 0 on all the boundaries of computing plane. In the following, the minimum and maximum
values of stream function denoted by 
min and 
max will be used to compare the results of our
hybrid scheme with available data in the literature [3, 4].

Firstly, the grid independence of the results was examined. Case A2, with Gr = 0, Rex = 103,
Rec = 0, was calculated using three grids. The 
min and 
max are compared with the result of

Table III. Grid independence test for case A2, Gr = 0,
Rex = 103, Rec = 0.

Grid 
min 
max

50× 50 −4.73 1.80× 10−4

100× 100 −4.98 7.31× 10−5

150× 150 −5.046 6.52× 10−5

Reference [4] −5.074 7.89× 10−5
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Raspo et al. [4] in Table III, where we can see that an 100× 100 grid is sufficient to obtain accurate
results.

Secondly, as many as 11 cases with difference parameter sets were simulated. The 11 cases
were classified into four groups. In group A, the crystal rotate with Rex varying from 102 to
104, while the crucible is at rest and Gr is set to zero. In group B, the crystal and crucible
rotate in opposite directions. Group A and B are all forced convection problems. Cases in
group C are natural convection problems. Cases in group D are more like practical applica-
tions because these melt flows combined both the natural convection and forced convection were
investigated.

Table IV shows the comparison of computed minimum and maximum stream function for all
the above 11 cases. In the table, the number in the bracket followed the case type indicates the
grid size used. If not specified, the grid used in our simulation is 100× 100. For comparison, we
also present the results of Xu et al. [3] using the second-order difference scheme with a grid size
of 80× 80. In all cases, the maximum absolute values of stream function computed by the LBM
agree very well with those of Xu et al. [3]. Some very small deviations between the computed
minimum absolute values of stream function can be neglected since the minimum absolute values
of stream function are so small compared with the maximum absolute values. Due to numerical
stability, the simulation of cases A3, B3, C2 used fine grids. The issue of numerical stability will
be discussed in detail in Section 4.3.

Figure 5 shows the calculated streamlines and temperature contours of case A2. That is a typical
result for group A. There is a primary vortex induced by rotation of the crystal. For the cases of
group A, when the Reynolds number of crystal rotation is increased from 102 to 104, the maximum
absolute value of the stream function increases from 0.2272 to 40.47, which means the intensity
of vortex increases. For higher Reynolds number cases in group A, the centre of the vortex moves
towards the side wall of the crucible and the highest velocity region moves from the upper left
corner to the upper right corner. Hence, better quality crystal can be produced if Rex is high.

Figure 6 illustrates the streamlines and temperature contours of case B2, which represent the
flow pattern of group B. For cases in group B, the crystal and crucible rotate in opposite directions.
As a result, there are two vortices with opposite directions appearing in the upper left corner just
below the crystal and the lower right corner. With the increase in rotation speeds of the crystal and
crucible, the upper left vortex produced moves towards right corner and the lower right primary
vortex induced by the crucible rotation moves to the left and dominates the flow field. It is noticed
that for cases of forced convection problems where Gr = 0 (cases in group A and B), the contours
of temperature are very similar.

Figure 7 shows the streamlines and temperature contours of case C2. In this natural convection
flow case, the crucible and the crystal are all at rest. There is a primary vortex induced by the
temperature difference between the crystal and crucible. Compared with temperature contours in
Figures 5 and 6, the temperature contours of case C2 in Figure 7 shows the effect of buoyancy
force on the temperature field.

Figure 8 shows the streamlines and temperature contours of case D2. The streamlines and
contours illustrated the combined effects of the natural convective flow and forced convective flow.
It is found that the streamlines and temperature contours of cases in group D are very similar to
those of case C1 whose Grashof number is also equal to 105. From Table IV, it is also found that
the 
max of cases in group D are all very close to that of case C1. That means in cases of group D,
if Rex<103, the natural convective flow dominates the melt flow while the force convective flow
induced by the crystal only has minor effect.
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Figure 5. Streamlines and temperature contours of case A2, Gr = 0, Rex = 103, Rec = 0.
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Figure 6. Streamlines and temperature contours of case B2, Gr = 0, Rex = 103, Rec = − 250.

4.3. Numerical stability comparison

The numerical stability of LBM depends on the relax time �, the Mach number of the flow and the
size of mesh. It is well known that in LBM if � is very close to 0.5, numerical instability would
appear. �min is usually case dependent. The Reynolds number is usually defined as

Re= UD

�
= Uc(D/�x )

c2s (� − 0.5)
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Figure 7. Streamlines and temperature contours of case C2, Gr = 106, Rex = 0, Rec = 0.
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Figure 8. Streamlines and temperature contours of case D2, Gr = 105, Rex = 102, Rec = 0.

the Mach number in LBM is U/cs�1. To simulate cases of high Reynolds number, with limitation
of �min and Mach number, usually we have to increase the value of (D/�x ) (i.e. enlarge the grid
size).

Generally speaking, adding complex position and time-dependent source terms into the LBE
would decrease the numerical stability [15]. Compared with the previous axisymmetric D2Q9
model [5], the expression of the source terms h(1)

i and h(2)
i in present model are much simpler

since the swirl velocity only appears in the term h(2)
i . Hence, the present simpler model is expected

to be more stable.
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Table V. Numerical stability comparison for case A1.

Grid �min (Present model) �min (Peng’s model [5])
20× 20 0.6125 0.6875
40× 40 0.625 0.725
60× 60 0.625 0.7375
80× 80 0.625 0.7375
100× 100 0.625 0.7375

To compare the numerical stability of our model and previous model [5], the benchmark case
A1 of melt flow in CZ crystal growth was simulated by the two models with the same boundary
condition treatment. As we know, the numerical stability can be demonstrated by the minimum �
value at which numerical instability does not appear. However, it is hard to find out the exact �min.
But if the value of �min is set as �min = 0.5+ k ∗ 0.0125, where k>0 is an integer, we may find out
�min roughly by finding the minimum k value at which numerical instability does not appear. So
the numerical experiment was carried out to find �min. The �min for the two axisymmetric D2Q9
models is listed in the Table V. From Table V, we can see that in all cases, �min of present model
are smaller than that of Peng et al. [5]. It seems our axisymmetric D2Q9 model is more stable.

The numerical stability is very important for simulation of high Reynolds number or high Grashof
number cases. For example, if we want to simulate the case of Gr = 107, with the limitation of in-
compressible flow in LBM, Ut usually should not exceed 0.25, since � =
c2s �t (� − 0.5)=Ut Rc/

√
Gr , if numerical stability requires ��0.6125, then the mesh point in

Rc should satisfy the relationship

Rc

�x
= c2s (� − 0.5)

√
Gr

cUt
�1/3× (0.6125 − 0.5)× √

107

1× 0.25
≈ 474

That means to simulate the case of Gr = 107, the coarsest grid should be 474× 474, otherwise,
the numerical instability would encounter in the simulation. While for the case of Gr = 107, if
numerical stability of the Peng’s model [5] requires ��0.7375, grid as fine as 1000× 1000 is
required. Hence, our numerical method provides a significant advantage in simulation melt flow
cases with high Reynolds number and high Grashof number.

5. CONCLUSION

As conventional CFD solvers, present hybrid scheme combining the LBMs and finite-difference
method can solve the axisymmetric swirling flow as a quasi-3D problem. An axisymmetric
incompressible lattice Boltzmann D2Q9 model was proposed in this paper by introducing an
additional source term to LBE. With limit of Mach number M�1 and Lx/(csT )�1, this axisym-
metric D2Q9 model successfully recovered the continuity equation and momentum equations for
axial and radial velocities through Chapman–Enskog expansion (Appendix A). The equation for
swirl velocity and the heat equation were solved by finite-difference methods.

This hybrid scheme was successfully applied to simulate the Taylor–Couette flow between two
concentric cylinders. It was found that the residual convergence behaviour of this hybrid scheme
is similar to that of explicit FVM. It is found that compared with LBM + FD solver, FLUENT
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requires about 3.35 times larger CPU time per iteration. However, to reach the same convergence
criterion, the CPU time taken by our LBM+FD solver and explicit FVM solver are of same order.

The hybrid scheme was also applied to simulate flows in CZ crystal growth. Compared with
results in other literatures [3, 4], the hybrid scheme can give out very accurate results for benchmark
problems. Present axisymmetric D2Q9 model also seems more stable than that of Peng et al. [5].
As a result, this scheme can give accurate results for high Reynolds number and high Grashof
number cases with smaller grid size.

APPENDIX A: BRIEF CHAPMAN–ENSKOG DERIVATION OF THE
AXISYMMETRIC D2Q9 MODEL

We consider the problems of the laminar axisymmetric swirling flow of an incompressible liquid
with an axis in x direction. The continuity equation (1) and NS momentum equations (2) in
the pseudo-Cartesian coordinates (x, r) would be recovered from our axisymmetric D2Q9 model
through the Chapman–Enskog expansion.

Here an incompressible D2Q9 model is used to derive our axisymmetric model. The nine discrete
velocities of our model are illustrated in Equation (4). In our derivation we adopt �x = �t . The
evaluation equation to describe 2D flow in (x, r) pseudo-Cartesian coordinates is illustrated as
Equation (5). In our derivation, the Einstein summation convention is used.

As we know, the strategy for incorporating source terms into the LBE can be applied for fluid
problems in which an external or internal force is involved. Gravity can be modelled by inserting
source terms with different forms into LBE [16]. To simulate the particle–fluid suspensions, the
forcing term is expanded in a power series in the particle velocity [17]. The form of source
term [17] was also used to derive a correct representation of the forcing term [18]. For the above
derivation [16–18], since the external or internal forces are simple, source term hi is only expanded
to first-order and there is no h(2)

i term.
However, to model the spatial and time-dependent ‘forces’ in RHS of Equations (1) and (2),

source term hi would be much more complex and should be expanded to second-order as that
illustrated in Equation (A2) [10]. It is noticed that the choice of following forms of h(1)

i and h(2)
i

or that in Reference [10] is only one particular strategy to incorporate ‘geometrical source terms’
into the LBM. The other possible strategies to derive axisymmetric models are suggested in detail
in Reference [15].

At the beginning, we adopt the following expansions [10, 12]:

fi (x + eix , r + eir , t + 1) =
∞∑
n=0

	n

n!D
n fi (x, r, t) (A1)

fi = f (0)
i + 	 f (1)

i + 	2 f (2)
i + · · ·

�t = 	�1t + 	2�2t + · · ·
�� = 	�1�

hi = 	h(1)
i + 	2h(2)

i + · · ·

(A2)

where 	= �t and D ≡ (�t + e� · ��), �= x, r and x�, x� means x or r .
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Retaining terms up to O(	2) in Equations (A1) and (A2) and substituting into Equation (5)
results in the following Equations (A3)–(A5)

O(	0) : ( f (0)
i − f eqi )/�= 0 (A3)

O(	1) : (�1t + ei��1�) f
(0)
i + f (1)

i /� − h(1)
i = 0 (A4)

O(	2) : �2t f
(0)
i +

(
1− 1

2�

)
(�1t+ei��1�) f

(1)
i +1

2
(�1t+ei��1�)h

(1)
i +1

�
f (2)
i −h(2)

i = 0 (A5)

The distribution function fi is constrained by the following relationships:

8∑
i=0

f (0)
i = p

c2s
,

8∑
i=0

ei� f
(0)
i = �0u� (A6)

8∑
i=0

f (m)
i = 0,

8∑
i=0

ei f
(m)
i = 0 for m>0 (A7)

With the properties of the tensor E (n) = ∑
� e�1e�2, . . . , e�n [19], we have

8∑
i=0

ei�ei� f (0)
i = �0u�u� + p��� (A8)

∑
i
ei�ei�eik f

(0)
i = �0c

2
s (� jk��� + � j���k + � j���k)u j (A9)

Mass conservation and h(1)
i

Summing on i in Equation (A4), we obtain at O(	)

�1t (p/c2s ) + �0��u� =∑
i
h(1)
i (A10)

which motivates the following selection of h(1)
i when comparing with the target dynamics of

Equations (1) and (2). Rewriting (A10) in a dimensionless form, we can see that a condition of
Lx/(csT )�1 should be satisfied to neglect the first LHS term [12], where Lx is the character
length in x direction, T is the character time of unsteady flow. That is an additional limit of our
derivation besides condition Mach number M�1.

To recover the continuity Equation (1), because
∑

i �i = 1, the following selection of h(1)
i is

reasonable [10]:
h(1)
i =−�i�0ur/r (A11)

Then we proceed to O(	2) now. Summing on i in Equation (A5) gives

�2t (p/c2s ) +∑
i

1

2
(�1t + ei��1�)h

(1)
i −∑

i
h(2)
i = 0 (A12)
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Since �2t (p/c2s ) = 0 [12] and with our target dynamics in view, the remaining terms in Equation
(A12) should vanish. Hence, we obtain

∑
i
h(2)
i = 1

2

∑
i

(�1t + ei��1�)h
(1)
i = 1

2

[
�1t
∑
i

(−�i�0ur
r

)]
= −1

2
�1t
(�0ur

r

)
(A13)

In the above process, we have used the results of
∑

i �i ei� = 0.

Momentum conservation and h(2)
i

Multiplying Equation (A4) by ei� and summing on i , gives

�0�1t u� + �1��0
�� =∑

i
h(1)
i ei� = 0 (A14)

where �0
�� = ∑8

i=0 ei�ei� f (0)
i is the zeroth-order momentum flux tensor. With �0

�� given by
Equation (A8), Equation (A14) gives

�0�1t ur =−���
0
r� =−��(p�r� + �0u�ur ) (A15)

Substituting Equation (A15) into Equation (A13), we have a condition on the h(2)
i∑

i
h(2)
i = 1

2r
��(p�r� + �0u�ur ) (A16)

Multiplying Equation (A5) with ei� and summing over i gives

�0�2t u� +
(
1 − 1

2�

)
�1��

(1)
�� =−1

2

(
�1t
∑
i
ei�h

(1)
i + �1�

∑
i
ei�ei�h

(1)
i

)
+∑

i
h(2)
i ei� (A17)

where �(1)
�� = ∑

i ei�ei� f (1)
i is the first-order momentum flux tensor. With the aid of Equations

(A4) and (A9), we have

�(1)
�� =∑

i
ei�ei� f (1)

i =−�
∑
i
ei�ei�D1t f

(0)
i + �

∑
i
ei�ei�h

(1)
i

= −�

[
�1t�

(0)
�� + �k

(∑
i
ei�ei�eik f

(0)
i

)]
+ �

∑
i
ei�ei�h

(1)
i

= −�[�1t�(0)
�� + �0c

2
s (���� j u j + ��u� + ��u�)] − �0�c

2
s ���ur/r (A18)

For the first term in Equation (A18), using Equations (A10) and (A14) and the additional condition
Lx/(csT )�1, it is found that �1t�

(0)
�� are of O(u3). Hence, this term can be neglected [19]. Then,

the second term in LHS of Equation (A17) can be written as

(
1 − 1

2�

)
�1��

(1)
�� = −�

(
1 − 1

2�

)
�0c

2
s

[
�1�

(
���� j u j + �u�

�x�
+ �u�

�x�

)
+ �1�(���ur/r)

]

= −��0�1�(��u� + ��u�) (A19)
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Substituting Equation (A19) into Equation (A17) and using the result of
∑

i ei�ei�h
(1)
i =

c2s ����0ur/r , Equation (A17) can be written as

�u�

�t
+ �u�u�

�x�
+ �p

�0�x�
− �

�2u�

�x2�
= 1

2
c2s ��

(ur
r

)
+ ���(��u�) +∑

i

h(2)
i

�0
ei� (A20)

The RHS of (A20) can be written as

c2s (1 − �)��

(ur
r

)
+∑

i

h(2)
i

�0
ei�

Comparing momentum Equation (A20) with Equation (2), to recover the NS momentum equations
of axial and radial velocities, Equation (A21) should be satisfied

c2s (1 − �)��

(ur
r

)
+∑

i

h2i
�0

ei� =−u�ur
r

+ �

r

(
�r u� − ur

r
�r�
)

+ u2z
r

��r + S (A21)

Solving equation system of Equations (A16) and (A21), we can obtain the expression of h(2)
i as

follows

h(2)
i

�0
= �i

2r

[
��

(
p�r�
�0

+ u�ur

)]
+ 3�i

[ �

r

(
ei��r u� − ur

r
eir
)

− u�ur
r

ei�
]

−�i (1 − �)��

(ur
r

)
ei� + 3�i

(
u2z
r
eir + ei�S

���

)
(A22)

Equation (A22) can be rewritten explicitly as

h(2)
i

�0
= �i

2r

[
�r

(
p

�0

)
+ �xuxur + �r urur

]
+ 3�i�

r

(
�r uxeix + �r ur eir − ureir

r

)

− 3�i
ur
r

(uxeix + ureir ) − �i (1 − �)

(
�xur
r

eix − ur
r2

eir + �r ur
r

eir

)

+ 3�i

(
u2z
r
eir + eix S

��x
+ eir S

��r

)
(A23)

The expression of h(1)
i [Equation (A11)], h(2)

i [Equation (A23)] are successfully derived and the
continuity equation (1) and NS equation (2) can be fully recovered.
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